
Installation Guide for Production
Deployments with Kubernetes
Sitecore Experience Commerce 10.1

May 24, 2022

Table of Contents
1. Introduction ... 4
2. Sitecore XC Kubernetes specifications .. 5

2.1. Sitecore Commerce Container SDK ... 5
2.2. Sitecore container registry .. 5
2.3. Client software requirements .. 5
2.4. Kubernetes cluster software requirements ... 6
2.5. Kubernetes cluster hardware requirements .. 6
2.6. Required external data services .. 7
2.7. Azure Kubernetes service requirements .. 7
2.8. Ingress Controller Requirements ... 8

3. Prerequisites .. 9
3.1. Prepare Kubernetes specification files ... 9
3.2. Generate the Identity Server token signing certificate .. 9
3.3. Set up Kubernetes secrets ... 10

3.3.1. Prepare YAML files ... 10
3.4. Generate TLS/HTTPS certificates ... 11
3.5. About production and non-production containers images ... 12
3.6. Deploy external data services .. 13

4. Topology .. 14
5. Deploying Sitecore XC to the Azure Kubernetes Service .. 16

5.1. Create a resource group .. 16
5.2. Configure the Kubectl context cluster .. 17
5.3. Deploy an ingress controller .. 17
5.4. Deploy the secrets .. 18
5.5. Deploy External Services for a non-production deployment .. 18
5.6. Deploy the data initialization jobs .. 18
5.7. Deploy the Sitecore XC pods .. 19
5.8. Update the local host file ... 19
5.9. Validate access to the Commerce Authoring environment instance 20

6. Post-deployment tasks ... 21
6.1. Bootstrap and initialize the Commerce Engine .. 22

6.1.1. Setup the environment in Postman .. 22
6.1.2. Bootstrap and initialize the Commerce Engine .. 23

6.2. Validate the deployment ... 24
6.2.1. Validate the deployment of Business Tools ... 24
6.2.2. Validate access to the Content Management instance .. 24

6.3. Configure user accounts ... 25
6.4. Generate catalog templates .. 26
6.5. Create an SXA Storefront tenant and site .. 27
6.6. Configure SolrCloud search indexes .. 27
6.7. Perform full rebuild of Commerce indexes .. 28

7. Appendix A – Kubernetes secrets list .. 29
7.1. XC Kubernetes secret files ... 29
7.2. XP Kubernetes secret files ... 30
7.3. SearchStax secret files ... 33

8. Appendix B - Common issues ... 34
8.1. Cannot upload a Translations file to the website root folder .. 34
8.2. Screenshots are not generated on Content testing dialogs .. 35
8.3. Only main Sitecore log is exposed for Sitecore roles containers ... 36
8.4. Kubelet error occurs while starting container .. 37

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 2

9. Appendix C: Guidance for using existing Solr and SQL services ... 38
9.1. Prepare for a deployment using your own SQL and Solr services 38
9.2. Deploy Sitecore XC to the Kubernetes Azure service .. 38
9.3. Post-deployment steps .. 39

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 3

1. Introduction

Introduction to using Kubernetes to orchestrate your Sitecore Experience Commerce deployment to
production.

Sitecore Experience Commerce (XC) uses Kubernetes (K8s) as the default orchestrator for deploying
to production. The Sitecore XC Kubernetes specification files that are used to map the minimum
required configuration parameters between the Sitecore XC software containers are provided as a
reference.

IMPORTANT
Sitecore customers are expected to extend these specifications to support their own
production deployment requirements. It is the responsibility of each Sitecore customer
to ensure that their production deployments meet the standards for stability and
security set by their organization.

This guide describes how to deploy Sitecore Experience Commerce (XC) containers to the Azure
Kubernetes Service (AKS). AKS is a Microsoft cloud hosted Kubernetes service with additional
functionality that takes advantage of Azure specific features like blob storage and load balancing.

The Sitecore XC for Kubernetes specification files are designed to avoid Azure specific dependencies
where possible.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 4

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes

2. Sitecore XC Kubernetes specifications

Sitecore provides Kubernetes specification files (.yaml) that you can use to deploy the containers to a
Kubernetes cluster.

You use a remote client, Kubectl (Kube control), to configure the Kubernetes clusters and specify the
desired configuration state.

Kubectl is available as part of the Azure CLI or you can use the standalone version.

2.1. Sitecore Commerce Container SDK

The Sitecore Commerce Container SDK package contains Kubernetes specification files for deploying a
reference Sitecore XC software cluster solution. You can download the Sitecore Commerce Container
SDK package (Sitecore.Commerce.Container.SDK.*.*.*.zip) from the Sitecore Downloads site.

IMPORTANT
It is the responsibility of each Sitecore customer to ensure that their production
deployments meet the standards for stability and security set by their organization.

2.2. Sitecore container registry

The Sitecore container images are hosted in a public Docker container registry, and available to all
customers without authentication.

This public registry is the default registry used by the Sitecore Kubernetes specification files.

To start the Sitecore software container images, you must have a valid Sitecore license file.

The Sitecore Container Registry is hosted at scr.sitecore.com and supports the Docker content trust
model that lets you pull signed images.

2.3. Client software requirements

The following client software is required for deployment with Kubernetes:

• Operating system:

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 5

https://kubernetes.io/docs/reference/kubectl/overview/
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/sitecore-commerce-container-sdk.html
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx
https://docs.docker.com/engine/security/trust/content_trust/

• Windows 10 1809 or later
or

• Windows Server 1809 or later

• Azure Az CLI 2.8.0 or later

NOTE
(Only required for AKS deployments)

• Windows PowerShell 5.1

• Kubectl 1.19.6 or later - use the latest stable non-preview version.

• To get a list of the supported locations, run the following command:

az account list-locations

• To get the latest stable version with the desired region (location) run the following
command:

az aks get-versions --location <location> --output table

• Helm 3.1.2 or later

NOTE
Only required for ingress controller deployments.

• Sitecore Commerce Container SDK

2.4. Kubernetes cluster software requirements
The following software is required for Kubernetes cluster:

• Kubernetes 1.19.6 or later - use the latest stable non-preview version.

• Windows Server 2019 version 1809

2.5. Kubernetes cluster hardware requirements
Kubernetes cluster requires the following hardware:

IMPORTANT
Operational requirements depend on service use.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 6

https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

• RAM
We recommend a minimum of 16 GB RAM per Kubernetes cluster during startup.

• CPU
We recommend a quad core or higher per Kubernetes node during startup.

• Disk
We recommend premium SSD disks for optimal performance when downloading and running
Docker containers.

2.6. Required external data services

In production environments, external data services must be hosted outside the Sitecore XC cluster.

NOTE
To reduce the time required for development and testing, sample external service
deployments for K8s are provided for non-production use only.

• Microsoft SQL Server

• Microsoft SQL Server 2017 or 2019
or

• SQL Azure Elastic Database Pool

• Apache Solr Cloud 8.4.0

• RedisLabs Redis 5.0 or higher

2.7. Azure Kubernetes service requirements

• AKS cluster configured with the latest stable release of Kubernetes–version 1.19.6 or later

• One Windows Server 2019 version 1809 OS node.

• For non-production or production environments on a Windows node, the recommended
minimum VM size is Standard_D8_v3.
For non-production environments on a Linux node, the recommended minimum VM size is
Standard_D4_v3. For production environments on a Linux node, the recommended minimum
VM size is Standard_D2_v2.

NOTE
For production environments, the VM size and the number of nodes depends on
your individual requirements.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 7

To get the latest version of Kubernetes supported by AKS, substitute the location parameter with the
desired region, and then run the following Azure CLI command:

az aks get-versions --location eastus --output table

For startup probes to check whether the Sitecore software container has started successfully, make
sure to use the latest stable, non-preview Kubernetes version.

2.8. Ingress Controller Requirements

A Kubernetes Ingress Controller is required to deploy the Sitecore Kubernetes specification files.

Sitecore Kubernetes deployments are tested with latest stable NGINX Ingress Controller releases from
the Helm project and are subject to change over time.

The latest stable release from the Helm project for NGINX Ingress Controller at the time of publishing
is:

• Chart version 1.41.1

• App version 0.34.1

The Sitecore Kubernetes specification files work with most Ingress Controllers supported by
Kubernetes but not all ingress controllers operate the same way. For more information, see the third
party documentation for Ingress Controller configuration for production deployments.

To support client IP address tracking and personalization, you must configure the Ingress Controller
to preserve the client source IP address in the X-Forwarded-For HTTP header.

To fully enable IP address tracking and personalization, you must make some additional changes to
the Sitecore software configuration.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 8

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/helm/charts/tree/master/stable/nginx-ingress

3. Prerequisites

Before you can deploy the Sitecore XC containers, you must prepare the Kubernetes specification files
and the supporting files.

You must:

• Prepare Kubernetes specification files

• Generate the Identity Server token signing certificate

• Set up Kubernetes secrets and YAML files

• Generate TLS/HTTPS certificates

• Review considerations about production and non-production images

• Deploy external data services

3.1. Prepare Kubernetes specification files

The Sitecore Experience Commerce (XC) Kubernetes specification files are designed to be deployed
using the Kubernetes Kubectl CLI.

To prepare Kubernetes specification files:

1. Download the Sitecore Commerce Container SDK package
(Sitecore.Commerce.Container.SDK.*.*.*.zip)

2. Extract the archive and locate the k8s-commerce-* folder for the Sitecore topology that you
want to use.

NOTE
Sitecore XC Server (XC1) is the only topology supported for Kubernetes
deployments.

3. Inspect the folder contents and Kubernetes specification files (.yaml).

3.2. Generate the Identity Server token signing certificate

Sitecore Identity Server requires a private key certificate to sign the tokens that are passed between
the server and the clients. You must generate this certificate, encode it to a Base64 encoded string
form, and pass it to the container as an environment variable.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 9

https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

To generate a self-signed certificate:

• Run the following sample script.

$newCert = New-SelfSignedCertificate -DnsName "localhost" -FriendlyName "Sitecore Identity
Token Signing" -NotAfter (Get-Date).AddYears(5)

Export-PfxCertificate -Cert $newCert -FilePath .\SitecoreIdentityTokenSigning.pfx -Password
(ConvertTo-SecureString -String "Test123!" -Force -AsPlainText)

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes((Get-
Item .\SitecoreIdentityTokenSigning.pfx))) | Out-File -Encoding
ascii -NoNewline -Confirm -FilePath .\SitecoreIdentityTokenSigning.txt

NOTE
The sample script generates a new self-signed certificate, prepares the string that
is used as a secret, and saves it to a SitecoreIdentityTokenSigning.txt file.

The SitecoreIdentityTokenSigning.txt file contains the certificate string
you specify as the -idCert value when you prepare the YAML files.

3.3. Set up Kubernetes secrets
Sitecore Kubernetes deployments use secrets to securely store the strings that are used by the
containers in the cluster.

The secrets are used to store database usernames, passwords, and TLS certificates and are
configured in text files and certificate files (tls.crt, tls.key) in the ./secrets/ folder in the
Kubernetes specification files for each topology.

NOTE
The only supported string encoding format for the content in Kubernetes secret files is
UTF-8.

Using a different encoding than UTF-8 causes containers to fail unexpectedly if the
containers is using secrets in environment variables.

You must deploy the secrets to the K8s cluster before you deploy any Sitecore containers.

You must update each secret text file (.txt, .crt, .key) with the required values before deploying
additional resources to the K8s cluster.

For a complete list of secrets and more information about individual secrets, see Appendix A.

The Sitecore.Commerce.Container.SDK package provides a Kubectl kustomization.yaml file
that deploys all the secret names and values in a single command.

3.3.1. Prepare YAML files
You use the UpdateK8SYaml.ps1 script to prepare the YAML files.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 10

https://kubernetes.io/docs/concepts/configuration/secret/

To prepare the YAML files:

• Open a PowerShell window, and run the following script:

.\UpdateK8SYaml.ps1 -jsonFile '.\configltsc2019.json' `
 -k8sRootPath '..' `
 -licenseFilePath "Location of your licence file" `
 -braintreeEnvironment "sandbox" `
 -braintreeMerchantId "Your merchant id" `
 -braintreePublicKey "Your public key" `
 -braintreePrivateKey "Your private key" `
 -telerikKey "Your Telerik Encryption Key" `
 -idCert "Your Sitecore Identity certificate" `
 -idSecret "Your Sitecore Identity secret" `
 -idPassword "Your Sitecore Identity password" `
 -xcIdSecret "Your XC Connect Client Secret" `
 -reportingApiKey "Your Sitecore Reporting API key"

3.4. Generate TLS/HTTPS certificates

To satisfy modern browser requirements and provide a secure environment by default, you must
generate certificates for TLS (Transport Layer Security) before you deploy the Sitecore containers. This
ensures secure communication between the browser and and the Kubernetes ingress controller.

The default Kubernetes ingress controller used by XC is the NGINX Ingress Controller . The NGINX
ingress controller is used to terminate TLS connections sent by the browser and proxy network
traffic to the individual containers inside the cluster. For more information, see the Kubernetes
documentation for ingress TLS configuration and the NIGNX TLS user guide.

The HTTPS protocol is required to support the secure browser cookies used by the Sitecore Content
Management role and the Identity Server role. HTTPS is enabled by default on the Content Delivery
role but you can remove it if it is not required for your specific use case.

The following sample script generates the required certificates. This script is also available in the
Sitecore Commerce Container SDK package.

To generate TLS/SSL certificates that are required by the NIGNX ingress controller and install them in
the correct certificate store:

1. Open a Windows Command Prompt as Administrator.

2. In the same directory as the Kubernetes specification files, for example in the k8s-commerce-
xc1 folder, run the following sample script:

NOTE
The mkcert utility will prompt the user the first time to install the generated
self-signed root certificate authority.

IF NOT EXIST mkcert.exe powershell Invoke-WebRequest https://github.com/FiloSottile/
mkcert/releases/download/v1.4.1/mkcert-v1.4.1-windows-amd64.exe
-UseBasicParsing -OutFile mkcert.exe

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 11

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.nginx.com/products/nginx/kubernetes-ingress-controller/
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://kubernetes.github.io/ingress-nginx/user-guide/tls/

.\mkcert -install

.\mkcert -cert-file secrets\tls\global-cm\tls.crt -key-file secrets\tls\global-cm\tls.key
"cm.globalhost"

.\mkcert -cert-file secrets\tls\global-cd\tls.crt -key-file secrets\tls\global-cd\tls.key
"cd.globalhost"

.\mkcert -cert-file secrets\tls\global-id\tls.crt -key-file secrets\tls\global-id\tls.key
"id.globalhost"

.\mkcert -cert-file secrets\tls\global-authoring\tls.crt -key-file secrets\tls\global-
authoring\tls.key "authoring.globalhost”

.\mkcert -cert-file secrets\tls\global-minions\tls.crt -key-file secrets\tls\global-
minions\tls.key "minions.globalhost”

.\mkcert -cert-file secrets\tls\global-shops\tls.crt -key-file
secrets\tls\global-shops\tls.key "shops.globalhost”

.\mkcert -cert-file secrets\tls\global-ops\tls.crt -key-file secrets\tls\global-
ops\tls.key "ops.globalhost”

.\mkcert -cert-file secrets\tls\global-bizfx\tls.crt -key-file secrets\tls\global-
bizfx\tls.key "bizfx.globalhost”

IMPORTANT
Once the self-signed root authority certificate and per-host TLS/SSL certificates
have been generated, you must install the root authority certificate on the
Trusted Root Certificate Authority store on all the clients.

3.5. About production and non-production containers images

To minimize the time it takes to deploy Sitecore Experience Commerce (XC) to Kubernetes clusters for
non-production use, Sitecore provides the required external services. These are for non-production
use only. The non-production images are not supported by Sitecore in a production environment.

IMPORTANT
The non-production services do not follow the best practices for hosting a production
environment and should not be considered as a basis for production environments.

Sitecore provides non-production images for Microsoft SQL Server, Apache Solr, and RedisLabs Redis
services.

WARNING
Every container image that has the type=nonproduction label is not supported in a
production environment. No warranty or extended support is provided for images that
are labelled for non-production.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 12

3.6. Deploy external data services

In production deployments, you are expected to host the required external services outside the
Kubernetes cluster.

External hosted services for Microsoft SQL Server, Apache Solr and RedisLabs Redis are required for
production Kubernetes support from Sitecore.

NOTE
Starting with Sitecore XC 10.1, the Sitecore.Commerce.Container.SDK package
includes a solr-init container for deployment that use the SearchStax service.

You must deploy and configure the external services for production use before you deploy Sitecore XC
to Kubernetes.

To deploy the required database, search schemas, and all the required data, we provide Kubernetes
data initialization jobs for Microsoft SQL Server and Apache Solr.

RedisLabs Redis external services do not require initialization. The required cache databases are
created during first use.

You must complete the data initialization jobs before you deploy the Sitecore software containers.

For more information about data initialization, see the section Deploy Data Initialization Jobs.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 13

4. Topology

Sitecore XC supports a scaled topology for use with Kubernetes.

Sitecore Experience Commerce for Kubernetes is suitable for use in production and non-production
environments. For non-production environments, the Sitecore.Commerce.Container.SDK
package includes samples that you can use for external services roles. The resources required to
run Sitecore XC in a non-production environment can be significant, but are required to mimic the
exact configuration that is used in production.

Sitecore roles in the scaled topology for use with Kubernetes

The Sitecore XC for Kubernetes topology includes container images for the following Sitecore roles:

NOTE
While the container images of Sitecore roles are considered production images, you
must create your own set of container images from your customized solution.

• Content Management

• Content Delivery

• Sitecore Identity Server

• XDB Processing

• XDB Reporting service

• XDB Collection service

• XDB Search service

• Marketing Automation Engine

• Marketing Automation Reporting

• XDB Reference Data service

• Sitecore Cortex Processing service

• Sitecore Cortex Reporting service

• XDB Search Worker

• Marketing Automation Engine

• Sitecore Cortex Processing

• MSSQL Data Initialization Job

• Solr Data Initialization Job

• Commerce Business Tools

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 14

• Commerce Commerce Ops Role

• Commerce Authoring Role

• Commerce Shops Role

• Commerce Minions Role

External service roles (non-production)

The Sitecore XC for Kubernetes topology includes the following sample container images of external
services to facilitate deployment in a non-production environment:

NOTE
The container images of external services are not intended nor suitable for production
deployment.

• Microsoft SQL Server

• Apache Solr

• RedisLabs Redis Server

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 15

5. Deploying Sitecore XC to the Azure Kubernetes
Service

You use Kubectl CLI to deploy the Sitecore XC containers to a Kubernetes cluster.

To deploy Sitecore XC to the Azure Kubernetes Service, perform the following:

• Create a resource group

• Configure the Kubectl context cluster

• Deploy an ingress controller

• Deploy the secrets

• Deploy External Services for a non-production deployment

• Deploy the data initialization jobs

• Deploy the Sitecore XC pods

• Update the local host file

• Validate access to the Commerce Authoring environment instance

5.1. Create a resource group

To create a new resource group to use with the AKS cluster, you must use the Azure command-line
interface (Azure CLI) that contains one or more Windows Server 2019 version 1809 nodes.

NOTE
You can use your existing AKS cluster and resource group.

For more information about using the Azure CLI, see the Azure documentation.

To create a resource group:

1. Log in to the Azure CLI and set a subscription.

az login
az account set --subscription "Your Subscription"

2. Create a resource group:

az group create --name <MY_RESOURCE_GROUP_NAME> --location <LOCATION>

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 16

https://docs.microsoft.com/en-us/azure/aks/windows-container-cli

5.2. Configure the Kubectl context cluster

This procedure assumes you completed the creation of a resource group.

To configure the Kubectl context cluster:

• Create a cluster and a node pool for Windows.

az aks create --resource-group <RESOURCE_GROUP_NAME> --name <CLUSTER_NAME> `

 --node-count 1 --enable-addons monitoring
--kubernetes-version <K8S_VERSION> --generate-ssh-keys `

 --windows-admin-password <PASSWORD> --windows-admin-username azureuser --vm-set-type
VirtualMachineScaleSets --load-balancer-sku standard --network-plugin azure --node-vm-size
<LINUX_VM_SIZE>

az aks nodepool add --resource-group <RESOURCE_GROUP_NAME> --cluster-name <CLUSTER_NAME> --
os-type Windows
--name win --node-count 1 --node-vm-size <WINDOWS_VM_SIZE> --kubernetes-version <K8S_VERSION>

az aks get-credentials
--resource-group <RESOURCE_GROUP_NAME> --name <CLUSTER_NAME>

5.3. Deploy an ingress controller

To deploy an ingress controller:

1. Use the Windows AMD64 binaries to Install Helm.
You can also use an alternative method as described in Installing Helm Through Package
Managers.

2. Add an NGINX ingress controller feed to Helm.

helm repo add stable https://kubernetes.github.io/ingress-nginx

3. Use Helm to deploy the NGINX ingress controller.

helm install nginx-ingress stable/ingress-nginx
 --set controller.replicaCount=2
 --set controller.nodeSelector."kubernetes\.io/os"=linux
 --set defaultBackend.nodeSelector."kubernetes\.io/os"=linux
 --set-string controller.config.proxy-body-size=1000m
 --set controller.service.externalTrafficPolicy=Local
 --set controller.admissionWebhooks.patch.nodeSelector."kubernetes\.io/os"=linux

NOTE
For more information about ingress configuration, see NGINX Ingress Controller
Configuration.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 17

https://docs.microsoft.com/en-us/azure/aks/windows-container-cli#create-a-resource-group
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration

5.4. Deploy the secrets
To deploy the secrets to the secret files:

• Ensure that all the secrets files (.txt, .crt, .key) files in the .\secrets folder are updated
according to the requirements listed in Appendix A.

kubectl apply -k .\secrets

5.5. Deploy External Services for a non-production deployment
To deploy the external services:

1. From the root folder of the desired topology, run the following command:

kubectl apply -k .\external

2. To check the status of the pods, run the following command:

kubectl get pods -o wide

3. Wait until the status of all the pods is Running/OK.

kubectl wait --for=condition=Available deployments --all --timeout=900s
kubectl wait --for=condition=Ready pods --all

5.6. Deploy the data initialization jobs
To deploy the data initialization jobs:

1. From the root folder of the desired topology, run the following command:

kubectl apply -k .\init

NOTE
If you are using SearchStax as solr provider, use the following command
instead:

kubectl apply -k .\overlays\init\SearchStax

2. To check the status of the jobs, run the following command:

kubectl get jobs -o wide

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 18

3. Wait until the status of all the jobs is Complete/OK.

kubectl wait --for=condition=Complete job.batch/solr-init --timeout=600s kubectl wait --
for=condition=Complete job.batch/mssql-init --timeout=600s

5.7. Deploy the Sitecore XC pods

To deploy the Sitecore XC pod:

1. From the root folder of the topology, for example from the k8s-commerce-xc1 folder, run the
following command:

kubectl apply -f .\volumes\platform-config-storage.yaml
kubectl apply -f .\volumes\azurefile\submit-queue.yaml

2. From the root folder of the topology, for example from the k8s-commerce-xc1 folder, run
the following command:

kubectl apply -k .\

3. To check the status of the pods, run the following command:

kubectl get pods -o wide

4. Wait until the status of all the pods is Running/OK.

kubectl wait --for=condition=Available deployments --all --timeout=1800s

5. From the root folder, run the following command:

kubectl apply -k .\ingress-nginx

6. From the root folder, run the following command:

kubectl apply -f .\ingress-nginx\configuration.yaml

5.8. Update the local host file

To update the local host file:

1. To obtain the external IP address of the ingress controller service for the CM role, run the
following command:

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 19

kubectl get service -l app=nginx-ingress

2. Update the local host file with the external IP address and the hostnames that are required by
the ingress controller.
The default hostnames are:

• cm.globalhost

• cd.globalhost

• Id.globalhost

• authoring.globalhost

• shops.globalhost

• minions.globalhost

• ops.globalhost

• bizfx.globalhost

5.9. Validate access to the Commerce Authoring environment
instance

To validate the deployment of the Commerce Authoring environment instance:

• Open a browser, and enter the URL for the Commerce Engine instance running the
Commerce Authoring service. The default hostname for the Commerce Authoring is: https://
authoring.globalhost/commerceops/$metadata.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 20

6. Post-deployment tasks

Once you have confirmed that the status of all containers is healthy, you must perform the following
tasks to complete your deployment:

• Bootstrap and initialize the Commerce Engine

• Validate the deployment

• Configure user accounts

• Generate catalog templates

• Create an SXA Storefront tenant and site (for XC1-CXA topology only)

• Configure SolrCloud search indexes

• Perform full rebuild of Commerce indexes

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 21

6.1. Bootstrap and initialize the Commerce Engine

After you have confirmed that containers have a healthy status, you must bootstrap and initialize your
Commerce environments.

The Sitecore Commerce Engine SDK includes samples of API calls for DevOps operations, so that you
can access the Sitecore XC API directly. The following instructions assume that you are using Postman
to exercise the Sitecore XC API.

NOTE
The following instructions assume that you have access to a Sitecore XC development
(or DevOps) environment, with the Postman API samplesdeployed. The Postman
samples are included as part of the Sitecore Commerce Engine SDK, available for
download in the Sitecore XC Packages for On Premise WDP package.

6.1.1. Setup the environment in Postman
You must setup the environment in Postman to point to your deployment before you can exercise the
API samples.

To setup the environment in Postman, for example, the Habitat Environment:

1. In the top right corner of Postman, in the environment selector drop-down, click the
environment name, for example Habitat Environment.

2. Click the Environment quick look icon, and in the Environment values dialog, click Edit.
The following table shows the default values
from the Sitecore.Commerce.Container.SDK/k8s-commerce-xc1/ingress-nginx/
ingress.yaml)

Variable Current value

Environment HabitatAuthoring

ShopperId ShopperId

Language en-US

Currency USD

ServiceHost https://authoring.globalhost

OpsApiHost https://ops.globalhost

AuthoringHost https://authoring.globalhost

MinionsHost https://minions.globalhost

ShopsHost https://shops.globalhost

SitecoreIdServerHost https://id.globalhost

HostName <deployment-name>

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 22

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/execute-sample-api-calls-in-postman.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/sitecore-commerce-engine-sdk.html
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

Variable Current value

SitecoreIdServerPassword <Password>

NOTE
This values should match the value used in the
k8s-commerce-xc1\secrets\xp\sitecore-
adminpassword.txt file).

3. In the MANAGE ENVIRONMENTS dialog, update the values to match those defined in the /
k8s-commerce-xc1/ingress-nginx topology folder.

6.1.2. Bootstrap and initialize the Commerce Engine
To run the bootstrap and initialize operations:

1. In the top right corner of Postman, click the environment selector and select the environment,
for example the Habitat Environment.

2. In the Postman Collections pane, open the Authentication folder, and in the Sitecore sub-folder,
execute the GetToken request.

3. In the Postman Collections pane, navigate to the SitecoreCommerce_DevOps folder.

4. Open the 1 Environment Bootstrap folder, and execute the Bootstrap Sitecore Commerce call.

5. Open the 3 Environment Initialize folder, and execute the Ensure\Sync default content paths
call.

NOTE
If the status of a request is WaitingForActivation, you can execute
the Check Long Running Command Status request. When you execute the
CheckCommandStatus request, you must ensure you are calling the same
service that the previous command was executed in.

6. In the 3 Environment Initialize folder, execute the Initialize Environment call.

NOTE
If the status of a request is WaitingForActivation, you can execute
the Check Long Running Command Status request. When you execute the
CheckCommandStatus request, you must ensure you are calling the same
service that the previous command was executed in.

7. Repeat step 5 and step 6 for other environments, if applicable (for example, for the
AdventureWorks environment).

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 23

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/check-the-status-of-a-long-running-command.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/check-the-status-of-a-long-running-command.html

6.2. Validate the deployment

After bootstrapping and initializing the Commerce Engine, make sure that you can access the
Business Tools, and the Sitecore Launchpad.

6.2.1. Validate the deployment of Business Tools
The Sitecore Commerce XC Business Tools are deployed in the Authoring environment.

To validate the deployment of the Business Tools:

1. Open a browser, and enter the URL for the Commerce Business tools instance. The default
host name for the XC Business Tools is: https://bizfx.globalhost.

2. Login to the Business Tools and ensure that you can browse the tools.

NOTE
Within the Sitecore Launchpad, the links to the Business Tools will be broken when you
bring up the containers. To fix it, follow these instructionsand, in the Link field, enter
the URL https://bizfx.globalhost/ (instead of https://localhost:4200).

6.2.2. Validate access to the Content Management instance
To validate the deployment of the Content Management instance:

1. Open a browser, and enter the URL for the Content Management instance. The Content
Management instance runs on port 443 and uses the HTTPS protocol.
The default host name for the Content Management instance is: https://cm.globalhost/
Sitecore

2. Validate that you can login to Sitecore and access the Sitecore Launchpad.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 24

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/change-the-url-to-the-commerce-business-tools.html

6.3. Configure user accounts

After you have deployed your Sitecore XC solution, you must create user accounts and assign the
appropriate roles.

NOTE
Every Sitecore XC user who requires access to the Business Tools must have the
Commerce Business User role assigned, at a minimum.

You create users and assign roles using the User Manager tool on the Sitecore Launchpad.

Refer to the User roles and permissions topic for information on the pre-defined roles and associated
permissions for the Sitecore XC Business Tools.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 25

https://doc.sitecore.com/developers/101/platform-administration-and-architecture/en/create-a-user.html
https://doc.sitecore.com/developers/101/platform-administration-and-architecture/en/add-a-user-to-a-role.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/user-roles-and-permissions.html

6.4. Generate catalog templates

After you have deployed your Sitecore XC solution, you must refresh the cache and generate catalog
templates, then republish the site.

You can perform both of these operations from the Content Editor on the Sitecore Launchpad.

To generate catalog templates:

1. Open a browser, and login to the Sitecore Launchpad (in a container deployment, the URL is
https://cm.globalhost/sitecore)

2. Click on Content Editor.

3. In the Content Editor, click on the Commerce tab.

4. Click on Refresh Commerce Cache (in the Caches tile).

5. Click on Update Data Templates (in the Catalog tile).

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 26

6.5. Create an SXA Storefront tenant and site

If your deployment topology includes the SXA Storefront and you to want to use the SXA Storefront
site as a starting point to create your own e-commerce site, you must create a new tenant and
storefront site using this procedure.

NOTE
In deployment using Kubernetes, the SXA Storefront site is functional only after you
complete all post-deployment steps.

6.6. Configure SolrCloud search indexes

The Sitecore XC deployment with Kubernetes runs a solr-init container for deploying the SolrCloud
service. In order to successfully build Sitecore web index, you must first populate the managed
schema.

To configure SolrCloud search indexes:

1. Open a browser, and navigate to: https://cm.globalhost/sitecore.

2. Login to Sitecore with the admin user and password that you configured as a XP Kubernetes
secret.

3. In the Sitecore Control Panel, in the Indexing tab, click Populate Solr Managed Schema.

4. In the Schema Populate dialog box, select all the indexes and then click Populate.

NOTE
Wait for the process to complete, then close the dialog box.

5. In the Sitecore Control Panel, click Indexing manager and, in the Indexing Manager dialog
box, select sitecore_web_index and other indexes that you want to rebuild and then click
Rebuild.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 27

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/create-a-commerce-tenant-and-site.html

6.7. Perform full rebuild of Commerce indexes

After you initialized your environments with Commerce data (for example, the sample
AdventureWorks or Habitat environments), you must rebuild the following Commerce indexes using
Postman:

• Catalog Items

• Promotions

• Price Cards

To rebuild Commerce search indexes using Postman:

1. In the Postman Collections pane, expand the SitecoreCommerce_DevOps collection.

2. Open the Minions folder, and execute the following request:

• Run FullIndex Minion - Catalog Items request.

• Run FullIndex Minion - Promotions request.

• Run FullIndex Minion - PriceCards

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 28

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/rebuild-a-commerce-search-index-using-postman.html

7. Appendix A – Kubernetes secrets list

The Kubernetes secrets files included in the Sitecore Commerce Container SDK package are divided
by folders as follows:

• XC Kubernetes secret files

• XP Kubernetes secret files

• SearchStax secret files

NOTE
The only supported string encoding format for the content in Kubernetes secret files is
UTF-8.

7.1. XC Kubernetes secret files

The following table lists and describes the XC Kubernetes secret files located in the /k8s-commerce-
xc1/secrets/xc/ folder.

File name Description Default value

commerce-bizfx-
currency.txt

The currency to
use by default by
the shop.

USD

NOTE
If the value for DefaultShopCurrency is not one of
the default currencies supported by the Commerce Engine
(USD, CAD, or EUR), you must add the currency to the
DefaultCurrency set on the Commerce Control Panel after
you deploy.

commerce-bizfx-
language.txt

The default
language of the
Business Tools
user interface.

en

commerce-bizfx-
shopname.txt

The default shop
name.

CommerceEngineDefaultStorefront

commerce-connect-
clientid.txt

The ID assigned
to the Commerce
Engine Connect
client used to
authenticate with
Sitecore Identity.

CommerceEngineConnect

commerce-connect-redis-
connection-string.txt

Connect string
used by Commerce
Connect to connect
to the Redis
instance.

redis:6379,defaultDatabase=1,allowAdmin=true,syncTimeout=3600000

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 29

File name Description Default value

commerce-connect-
clientsecret.txt

Shared secret
between the
Identity Server and
Commerce Engine
Connect client
roles.

Length: 64
characters

No default

commerce-engine-
braintreeenvironment.txt

The Braintree
environment.

No default

commerce-engine-
braintreemerchantid.txt

Your merchant ID
for the Braintree
payment provider.

No default

commerce-engine-
braintreeprivatekey.txt

The private key
associated to your
Braintree account.

No default

commerce-engine-
braintreepublickey.txt

The public key
associated to your
Braintree account.

No default

commerce-solr-
connection-string.txt

The connection
string for Sorl.

http://solr:8983/solr

commerce-redis-
connection-string.txt

The connection
string used by the
Commerce Engine
to connect to the
Redis instance.

redis:6379,ssl=False,abortConnect=False

xc/commerce-solr-prefix-
name.txt

The prefix to
use in Commerce
Solr core names
(as in commerce_
CatalogItemsScope,
for example.)

commerce

commerce-engine-archive-
databasename.txt

The name of the
entity archiving
database.

SitecoreCommerce_ArchiveSharedEnvironments

commerce-engine-
database-masterkey-
password.txt

The master key to
create an external
Azure SQL data
source for Entity
Archiving.

a3X8tA3FRMZf3xKN!

NOTE
You should change this value to a password that meets the
requirements of your Azure SQL policy.

commerce-engine-shared-
databasename.txt

The name of the
Commerce shared
environment
database.

SitecoreCommerce_SharedEnvironments

7.2. XP Kubernetes secret files

The following table lists and describes the XP Kubernetes secret files located in the /k8s-commerce-
xc1/secrets/xp/ folder.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 30

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/entity-archiving.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/entity-archiving.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-master-key-transact-sql?view=sql-server-ver15

File name Description Default

sitecore-adminpassword.txt The Sitecore admin user password Password12345

sitecore-collection-shardmapmanager-
database-password.txt

User password for database name
*_Xdb.Collection.ShardMapManager
in MS SQL Server.

Password12345

sitecore-collection-shardmapmanager-
database-username.txt

User name for database name
*_Xdb.Collection.ShardMapManager
in MS SQL Server.

shardmapmanageruser

sitecore-databaseprefix.txt The prefix used in Sitecore database
name.

Sitecore

sitecore-core-database-password.txt User password for database name
*_Core in MS SQL Server.

Password12345

sitecore-core-database-username.txt User name for database name *_Core in
MS SQL Server.

coreuser

sitecore-database-elastic-pool-name.txt Database elastic pool name no default

sitecore-databasepassword.txt User password to connect to the MS SQL
Server

Password12345

sitecore-databaseservername.txt Server name of the MS SQL Server mssql

sitecore-databaseusername.txt User name used to connect to MS SQL
Server

sa

sitecore-exm-master-database-password.txt User password for database name
*_EXM.Master in MS SQL Server

Password12345

sitecore-exm-master-database-username.txt User name for database name
*_EXM.Master in MS SQL Server

exmmasteruser

sitecore-forms-database-password.txt User password for database name
*_ExperienceForms in MS SQL Server

Password12345

sitecore-forms-database-username.txt User name for database name
*_ExperienceForms in MS SQL Server

formsuser

sitecore-identitycertificate.txt Certificate for input to the site No default

sitecore-identitycertificatepassword.txt Password to authenticate to the site. No default

sitecore-identitysecret.txt Shared secret between the Identity
Server and client roles.

Length: 64 characters

No default

sitecore-license.txt Sitecore license string. No default

sitecore-marketing-automation-database-
password.txt

User password for database name
*_MarketingAutomation in MS SQL
Server

Password12345

sitecore-marketing-automation-database-
username.txt

User name for database name
*_MarketingAutomation in MS SQL
Server

mauser

sitecore-master-database-password.txt User password for database name
*_Master in MS SQL Server

Password12345

sitecore-master-database-username.txt User name for database name
*_Master in MS SQL Server

masteruser

sitecore-messaging-database-password.txt User password for database name
*_Messaging in MS SQL Server

Password12345

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 31

File name Description Default

sitecore-messaging-database-username.txt User name for database name
*_Messaging in MS SQL Server

messaginguser

sitecore-processing-engine-storage-
database-password.txt

User password for database name
*_ProcessingEngineStorage in MS
SQL Server

Password12345

sitecore-processing-engine-storage-
database-username.txt

User name for database name
*_ProcessingEngineStorage in MS
SQL Server

processingenginestorageuser

sitecore-processing-engine-tasks-database-
password.txt

User password for database name
*_ProcessingEngineTasks in MS SQL
Server

Password12345

sitecore-processing-engine-tasks-database-
username.txt

User name for database name
*_ProcessingEngineTasks in MS SQL
Serve

processingenginetasksuser

sitecore-processing-pools-database-
password.txt

User password for database name
*_Processing.Pools in MS SQL Server

Password12345

sitecore-processing-pools-database-
username.txt

User name for database name
*_Processing.Pools in MS SQL Server

processingpoolsuser

sitecore-processing-tasks-database-
password.txt

User password for database name
*_Processing.Tasks in MS SQL Server

Password12345

sitecore-processing-tasks-database-
username.txt

User name for database name
*_Processing.Tasks in MS SQL Server

processingtasksuser

sitecore-redis-connection-string.txt Connection string to the Redis instance redis:6379,ssl=False,abortConnect=False

sitecore-reference-data-database-
password.txt

User password for database name
*_ReferenceData in MS SQL Server

Password12345

sitecore-reference-data-database-
username.txt

in MS SQL Server*_ReferenceDataUser
name for database name

refdatauser

sitecore-reportingapikey.txt API authentication key for the reporting
API.

00112233445566778899AABBCCDDEEFF

sitecore-reporting-database-password.txt User password for database name
*_Reporting in MS SQL Server

Password12345

sitecore-reporting-database-username.txt User name for database name
*_Reporting in MS SQL Server

reportinguser

sitecore-solr-connection-string.txt Connection string to Sitecore Solr
instance.

http://solr:8983/solr;solrCloud=true

sitecore-solr-connection-string-xdb.txt Connection string to Solr-xdb. http://solr:8983/solr/
sitecore_xdb;solrCloud=true

sitecore-telerikencryptionkey.txt Symmetric key used by the Telerik web
controls.

Length: 64-128 characters

No default

sitecore-web-database-password.txt User password for database name
*_Web in MS SQL Server

Password12345

sitecore-web-database-username.txt User name for database name *_Web in
MS SQL Server

webuser

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 32

https://docs.telerik.com/devtools/aspnet-ajax/general-information/web-config-settings-overview
https://docs.telerik.com/devtools/aspnet-ajax/general-information/web-config-settings-overview

File name Description Default

xp/sitecore-solr-core-prefix-name.txt

NOTE
Available in
Sitecore.Commerce.Containers.SDK
1.1.10 and later.

The prefix to use in Sitecore Solr core
names (as in sitecore_master_index, for
example.)

NOTE
If you change
the prefix default
value, you must
update the xp/
solr-connection-
string-xdb.txt
secret to include the
new prefix as part
of that connection
string.

sitecore

7.3. SearchStax secret files

The Sitecore.Commerce.Container.SDK package includes Kubernetes secret files for Sitecore
deployments that use SearchStax hosted Solr cloud service. The following table lists and describes the
Kubernetes secret files for SearchStax available in the /overlays/init/SearchStax folder.

NOTE
SearchStax secrets are only required if your Sitecore solution uses SearchStax hosted
Apache Solr service.

Filename Description Default

Sitecore-searchstax-account-
name.txt

The name of your SearchStax account. No default

sitecore-searchstax-apikey.txt A SearchStax api key that is associated to your SearchStax Solr cloud
deployment.

No default

sitecore-searchstax-deployment-
uid.txt

The unique ID of the SearchStax Solr cloud deployment. No default

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 33

8. Appendix B - Common issues

The section provides information to help troubleshooting common issues.

• Cannot upload a Translations file to the website root folder

• Screenshots are not generated on Content testing dialogs

• Only main Sitecore log is exposed for Sitecore roles containers

• Kubelet error occurs while starting container

8.1. Cannot upload a Translations file to the website root folder

If the Upload Files dialog box hangs during the upload operation, the following errors are written to
the log file:

ERROR Could not save posted file: ja-JP.xml

Exception: System.UnauthorizedAccessException

Message: Access to the path 'C:\inetpub\wwwroot\ja-JP.xml' is denied.

This happens because the Import language dialog box uploads translations files to the website root
folder by default and for security reasons, Write access is denied for the website root folder.

To workaround this issue, you should upload the translations files to the \upload\ folder. Write access
is enable for this folder.

To upload a translations file:

1. In the Open Language File dialog box, select the upload folder and then click Upload.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 34

2. In the Upload Files dialog box, you can now upload the translations file to the \upload\ folder.

You can now import translations file from this folder.

Note: the translations xml file will be saved to the Media library. It can be deleted after translations
are imported.

8.2. Screenshots are not generated on Content testing dialogs

On XC1 Kubernetes deployments where global DNS names are not configured, you might face with a
problem where the Preview and Start test dialog or the Test result dialog display blank screens:

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 35

This happens because WebUtil.GetServerUrl() metod returns the outer instance address
(http://cm.globalhost) while the ‘localhost‘ is expected. As a result, the hostname is resolved
incorrectly.

As a workaround, you can add an instruction to the container lifecycle PostStart hook, which adds a
record to the hosts file on the pod start as shown below to cm.yaml file for cm role:

containers:
- name: sitecore-xc1-cm
image: {registry}/{project}/sitecore-xc1-cm:{version}
ports:
- containerPort: 80
lifecycle:
postStart:
exec:
command: ["powershell","-Command","Add-Content C:/Windows/System32/drivers/etc/hosts '127.0.0.1
cm.globalhost'"]

8.3. Only main Sitecore log is exposed for Sitecore roles
containers

The LogMonitor tool is used to collect and output logs from containers. It is configured to monitor
following logs:

• System event log – Error level entries

• IIS logs

• primary Sitecore log (log.*.txt files) – for Sitecore roles

• xConnect log (xconnect-log-*.txt files) – for xConnect roles

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 36

NOTE
Auxiliary Sitecore logs (like search, crawling or publishing, etc.) are not monitored on
Sitecore containers. To see auxiliary logs, you can connect to corresponding container
via terminal (powershell or command prompt) and view them directly from the
container’s filesystem.

8.4. Kubelet error occurs while starting container

The only supported string encoding format in Kubernetes secret files is UTF-8.

Attempting to start a container using Kubernetes secret files where the encoding format is not UTF-8
fails with an error message similar to the following:

kubelet Error: failed to start container <container_name>: Error response from daemon: container
<sitecore-xp1-cortexprocessing> encountered an error during hcsshim::System::CreateProcess:
failure in a Windows system call: The parameter is incorrect. (0x57).

If this error occurs, verify the encoding format of Kubernetes secrets, including any secrets used in
environment variables.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 37

9. Appendix C: Guidance for using existing Solr and
SQL services

The Sitecore.Commerce.Container.SDK package includes sample container images for SQL and
Solr services that you can use in your test environment. However, there are scenarios where you
want you Sitecore XC Kubernetes deployment to use existing instance of Solr and SQL services. The
following information provides high level, basic, common instructions for using an existing instance of
Sorl and SQL services when deploying a Sitecore XC solution using Kubernetes.

NOTE
This information is provided as guidance only. Depending on your customizations or
other circumstances specific to your Commerce deployment, additional configuration
could be required.

9.1. Prepare for a deployment using your own SQL and Solr
services

To prepare for Kubernetes deployment using your own SQL and Solr service:

1. Complete the prerequisites steps and, when you set up the Kubernetes secrets file:

• review all the secrets pertaining to SQL database usernames, passwords and server
names for both Sitecore XP and Sitecore XC, an make sure they align with your existing
SQL service instance.

• review all of the secrets pertaining to Solr connection strings and prefix names of the Sorl
cores you use for Sitecore XP and Sitecore XC, and make sure they align with the values
of your existing Solr deployment.

2. Review all the .yaml files pertaining to the Kubernetes (k8s) deployment to ensure no
changes are required to support your instance of SQL and Solr services. If required, make
any configuration changes to support your own instances of SQL and Sorl services.

9.2. Deploy Sitecore XC to the Kubernetes Azure service

When you have completed all the prerequisites steps, you can deploy Sitecore XC to the Kubernetes
Azure service.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 38

IMPORTANT
Do not perform the step to deploy the data initialization jobs. This data initialization job
deploys the sample SQL database, search schemas, and data, and is not required when
using existing instances of Solr and SQL services.

9.3. Post-deployment steps

The post-deployment requirements when using an existing SQL service are different than in a new
deployment. When you deploy using existing services, you only need to perform the following post-
deployment tasks:

1. Setup the Postman to use the appropriate environment variables, and then bootstrap the
Commerce Engine. This step is required to update the Global database with your own
Commerce environments and configuration.

NOTE
You can follow these steps to setup the environment in Postman using your own
values, and to bootstrap the Commerce Engine. You do not need to initialize the
environment.

2. Restart the Commerce Engine containers to ensure the environment updates are applied.

NOTE
For a deployment with a storefront, the required domains.config
configuration is missing from the container deployment. It is recommended
to update the domains.config file in the volume to include the missing
configuration, or create a patch configuration for the domains when building
the images.

Installation Guide for Production Deployments with Kubernetes

© Copyright 2022, Sitecore® - all rights reserved. 39

	Installation Guide for Production Deployments with Kubernetes
	Table of Contents
	1. Introduction
	2. Sitecore XC Kubernetes specifications
	2.1. Sitecore Commerce Container SDK
	2.2. Sitecore container registry
	2.3. Client software requirements
	2.4. Kubernetes cluster software requirements
	2.5. Kubernetes cluster hardware requirements
	2.6. Required external data services
	2.7. Azure Kubernetes service requirements
	2.8. Ingress Controller Requirements

	3. Prerequisites
	3.1. Prepare Kubernetes specification files
	3.2. Generate the Identity Server token signing certificate
	3.3. Set up Kubernetes secrets
	3.3.1. Prepare YAML files

	3.4. Generate TLS/HTTPS certificates
	3.5. About production and non-production containers images
	3.6. Deploy external data services

	4. Topology
	5. Deploying Sitecore XC to the Azure Kubernetes Service
	5.1. Create a resource group
	5.2. Configure the Kubectl context cluster
	5.3. Deploy an ingress controller
	5.4. Deploy the secrets
	5.5. Deploy External Services for a non-production deployment
	5.6. Deploy the data initialization jobs
	5.7. Deploy the Sitecore XC pods
	5.8. Update the local host file
	5.9. Validate access to the Commerce Authoring environment instance

	6. Post-deployment tasks
	6.1. Bootstrap and initialize the Commerce Engine
	6.1.1. Setup the environment in Postman
	6.1.2. Bootstrap and initialize the Commerce Engine

	6.2. Validate the deployment
	6.2.1. Validate the deployment of Business Tools
	6.2.2. Validate access to the Content Management instance

	6.3. Configure user accounts
	6.4. Generate catalog templates
	6.5. Create an SXA Storefront tenant and site
	6.6. Configure SolrCloud search indexes
	6.7. Perform full rebuild of Commerce indexes

	7. Appendix A – Kubernetes secrets list
	7.1. XC Kubernetes secret files
	7.2. XP Kubernetes secret files
	7.3. SearchStax secret files

	8. Appendix B - Common issues
	8.1. Cannot upload a Translations file to the website root folder
	8.2. Screenshots are not generated on Content testing dialogs
	8.3. Only main Sitecore log is exposed for Sitecore roles containers
	8.4. Kubelet error occurs while starting container

	9. Appendix C: Guidance for using existing Solr and SQL services
	9.1. Prepare for a deployment using your own SQL and Solr services
	9.2. Deploy Sitecore XC to the Kubernetes Azure service
	9.3. Post-deployment steps

