
Installation Guide for a Developer
Workstation with Containers
Sitecore Experience Commerce 10.1

April 4, 2022

Table of Contents
1. Introduction ... 3

1.1. Topologies .. 4
1.1.1. XC Workstation topology (XC0) ... 4
1.1.2. XC Scaled topologies (XC1 and XC1-CXA) ... 4
1.1.3. Roles included in XC0 and XC1-CXA topologies ... 4

1.2. Sitecore XC Docker Compose files ... 6
1.2.1. Docker Compose file .. 6
1.2.2. Environment variables file .. 6

1.3. Software Requirements ... 7
1.4. Hardware requirements .. 8

2. Prepare for Commerce containers deployment .. 9
2.1. Prepare the environment variables file .. 10

2.1.1. The environment variables list .. 12
2.2. Generate the Identity Server token signing certificate .. 16
2.3. Generate TLS/HTTPS certificates ... 18
2.4. Update the Windows hosts file .. 19
2.5. About production and non-production containers images ... 20

3. Deploy a Sitecore XC developer workstation .. 21
4. Post-deployment tasks ... 23

4.1. Bootstrap and initialize the Commerce Engine .. 24
4.1.1. Setup the environment in Postman .. 24
4.1.2. Bootstrap and initialize the Commerce Engine .. 25

4.2. Validate the deployment ... 27
4.2.1. Validate the deployment of Business Tools ... 27
4.2.2. Validate access to the Content Management instance .. 27

4.3. Configure user accounts ... 28
4.4. Generate catalog templates .. 29
4.5. Perform full rebuild of Commerce indexes .. 30
4.6. Manually rebuild Sitecore XP indexes .. 30
4.7. Populate Solr managed schema .. 31
4.8. Create an SXA Storefront tenant and site .. 32
4.9. Clean up a workstation environment ... 33

5. Appendix A: Using existing Solr and SQL services in a Commerce Docker deployment 34
5.1. Configure a Commerce Docker container deployment to use an existing SQL service 34
5.2. Configure a Commerce Docker container deployment to use an existing Solr service 35
5.3. Prepare for deployment .. 36
5.4. Additional consideration when deploying the containerized solution 36
5.5. Post-deployment steps when using an existing SQL service instance 37

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 2

1. Introduction

Sitecore Experience Commerce uses Docker Compose as the container orchestrator on developer
workstations. Docker Compose is a simple container deployment tool that is bundled with Docker for
Windows. You can use other tools to deploy Sitecore container images, but we recommend that you
use Docker Compose to deploy the containers that form Sitecore Experience Commerce.

This guide provides step-by-step instructions for installing Sitecore Experience Commerce on a
developer workstation, based on the sample images that are included in the Sitecore Commerce
Container SDK package, available on the Sitecore Downloads site.

For information on installing Sitecore Experience Commerce using Kubernetes in a production
environment, download the Sitecore XC Installation Guide for Production Deployments with
Kubernetes.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 3

https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

1.1. Topologies
The Sitecore Commerce Container SDK provides container images that allows you to install Sitecore
XC on a developer workstation in the following topologies:

• XC Workstation topology (XC0)

• XC Scaled topology (XC1 and SX1-CXA)

1.1.1. XC Workstation topology (XC0)
The XC0 topology is used to deploy the Commerce Engine only, in a Docker workstation developer
environment. This topology is not intended for production deployment. It is designed to reduce
memory overhead, reduce download size, improve startup/shutdown time, and reduce complexity.

NOTE
The XC0 topology for developer workstation does not include container images for the
SXA storefront or supporting modules.

For a deployment that includes the modules required to deploy the SXA storefront, you
must install the XC1-CXA topology.

1.1.2. XC Scaled topologies (XC1 and XC1-CXA)
The Sitecore Commerce Container SDK includes two XC scaled topologies:

• The XC1-CXA topology is for a scaled Commerce deployment. The XC1-CXA topology includes
container images of modules required to support the SXA Storefront. This is the topology you
need to deploy if you want the SXA Storefront in your development environment.

NOTE
The XC1-CXA topology does not include a default storefront site configuration. The
topology provides container images of all supporting modules required to create
a tenant and SXA Storefront site as post-deployment steps.

• The XC1 topology is for a scaled deployment that excludes modules supporting the SXA
Storefront. You use this topology in a scaled, Commerce Engine only deployment, that does
not use the SXA Storefront.

NOTE
The Sitecore Commerce Container SDK does not include all Docker compose
YAML files required to deploy the container images of the XC1 topology.

The resources required to run XC in a non-production deployment can be significant but are required
to mimic the exact configuration that is used in production. In non-production deployments, we
recommend that you run XC with the workstation hardware requirements.

1.1.3. Roles included in XC0 and XC1-CXA topologies
The XC0 and XC1-CXA topologies include container images for Sitecore roles and for external services.

The following table lists the Sitecore roles that are included in the XC0 and XC1-CXA topologies,
respectively.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 4

NOTE
While the XC1-CXA topology contains roles suitable for a production or non-production
deployment, some of the container images it provides, such as Commerce Engine roles,
for example, are provided as samples. You must create your own set of container
images from your customized Commerce solution.

Sitecore roles XC0 topology XC1-CXA topology

Sitecore Identity Server ✓ ✓

Sitecore Commerce Business Tools (BizFX) ✓ ✓

Sitecore Commerce Authoring ✓ ✓

Sitecore Commerce Shops ✓ ✓

Sitecore Commerce Minions ✓ ✓

Sitecore Commerce Ops ✓ ✓

XDB Search Worker ✓ ✓

Marketing Automation Engine ✓ ✓

Sitecore Cortex Processing Engine ✓ ✓

xConnect Server (Standalone) ✓

Content Management (Standalone CM/CD) ✓

xConnect Server ✓

Content Management ✓

Content Delivery ✓

XDB Processing ✓

XDB Reporting service ✓

XDB Collection service ✓

XDB Search service ✓

XDB Reference Data service ✓

Marketing Automation Reporting ✓

In addition to the Sitecore roles, the XC0 and XC1-CXA topologies include sample container images of
external services.

NOTE
The external services are provided as non-production container images to facilitate the
deployment of the Sitecore XC sample solution in a development environment. They
are not intended nor suitable for production deployment.

• Microsoft SQL Server

• Apache Solr

• RedisLabs Redis Server

• Traefik Reverse Proxy

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 5

1.2. Sitecore XC Docker Compose files
Overview of how Docker Compose files are used in a Sitecore XC deployment and the information
they contain about containers and configurations.

To deploy the containers, Sitecore Docker Compose requires the following files:

• The docker-compose.yml file

• The .env file

NOTE
The Docker Compose files for each Sitecore XC topology are included in the Sitecore
Commerce Container SDK.

1.2.1. Docker Compose file
The Docker Compose configuration file is a text file (docker-compose.yml) that contains information
about the different containers and configuration of each Sitecore role in the deployment topology.
The Docker Compose file is the main configuration file that the docker-compose command uses.

1.2.2. Environment variables file
The environment variable configuration file is a text file (.env) that stores the configuration
information for the environment you want to deploy. The sample .env file provides default values
for any environment variables referenced in the Docker Compose file. You can edit this file outside
the main Docker Compose configuration, that is, using a text editor without using docker-compose
command line utility.

The environment variables are the preferred mechanism for passing configuration settings into
containers.

The following example shows how, for example, the mssql service role in the compose.yml file
uses an environment variable defined in the .env file to configure the SQL Server SA password
(SA_PASSWORD):

``` yaml
    mssql:
        isolation: ${ISOLATION}
        image: ${XC_NONPRODUCTION_SITECORE_DOCKER_REGISTRY}sitecore-xc0-mssql:${XC_PACKAGES_TAG}
        environment:
          SA_PASSWORD: ${SQL_SA_PASSWORD}
          SITECORE_ADMIN_PASSWORD: ${SITECORE_ADMIN_PASSWORD}
          ACCEPT_EULA: "Y"
          SQL_SERVER: mssql
        ports:
          - "14330:1433"
        volumes:
          - type: bind
            source: c:\containers\mssql-data
            target: c:\data
```

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 6

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/environment-variables/

1.3. Software Requirements
The following are software requirements for installing Sitecore Experience Commerce 10.1 with
containers on your developer workstation:

• Operating system:

• Windows 10 - The most recent 2 semi-annual feature releases.
or

• Windows Server - The current LTS version and most recent 2 semi-annual feature releases.

• Microsoft PowerShell 5.1

• Docker Desktop for Windows

• Sitecore Commerce Container SDK

NOTE
You must extract the Docker Compose configuration folder for the desired
topology.

See this article for additional details about Sitecore XC software compatibility for this release.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 7

https://docs.docker.com/docker-for-windows/install/
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx
https://kb.sitecore.net/articles/804595

1.4. Hardware requirements
The following are hardware requirements for installing Sitecore Experience Commerce with
containers on your developer workstation:

• RAM
We recommend that a developer workstation has a minimum of 32GB of RAM.

• CPU
We recommend a quad core or higher.

• Disk
Sitecore container images require approximately 25 GB of free disk space. We recommend the
use of solid-state drive (SSD) disks for optimal performance when downloading and running
Docker containers.

NOTE
The type of disks used for SQL Server and Solr can have a significant impact on
performance.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 8

2. Prepare for Commerce containers deployment

Before you can deploy the Sitecore XC containers, you must perform the following tasks to prepare
required files and certificates:

• Download the Sitecore.Commerce.Container.SDK.*.*.*.ZIP package and familiarize
yourself with its content. For a description of the SDK, see this topic.

• Prepare the environment variables

• Generate the Identity Server token signing certificate

• Generate TLS/HTTPS certificates

• Update the Windows hosts file

• Read about production and non-production container images

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 9

https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/sitecore-commerce-container-sdk.html

2.1. Prepare the environment variables file
Environment variables are the preferred mechanism for passing configuration settings into Sitecore
containers.

The environment variables for Sitecore Docker Compose are stored in an environment variable
configuration file (.env). Docker Compose loads these variables automatically during startup.

IMPORTANT
All the environment variables must fit inside a single 32,700 character block in the .env
file. If the total size of your own variables combined with the Sitecore variables
exceeds this size, you will be unable to set new values, and the system will not deploy
successfully.

NOTE
To reuse environment variables across multiple environments, you should consider
setting environment variables in the Windows operating system, and removing the
corresponding keys from the environment variable configuration file used by Docker
Compose.

You use the UpdateEnvCompose.ps1 script to prepare the .env file. The script sets values for those
variables who do not have a default value defined in the .env file. For a brief description of all
variables contained in the .env file, see the environment variables list.

Following is the list of variables for which you must provide a value, and that are propagated to
the .env file when you run the UpdateEnvCompose.ps1 :

Script parameter Description

licenseFile The path to your Sitecore license file.

Example:
"C:\Docker\Sitecore.Commerce.Container.SDK.1.0.214\scripts\license.xmlC:\temp\lice
nse.xml

In the env. file, sets the SITECORE_LICENSE variable.

braintreeEnvironment The Braintree environment where to direct API requests.

Example: "sandbox"

In the env. file, sets the XC_ENGINE_BRAINTREEENVIRONMENT variable.

braintreeMerchantId Your merchant ID for the Braintree payment provider.

Example: "rwd84b5k2rck8c7f"

In the env. file, sets the XC_ENGINE_BRAINTREEMERCHANTID variable.

braintreePublicKey The public key associated to your Braintree account.

Example: "747f5tsgkbk9xrk3"

In the variable env. file, sets the XC_ENGINE_BRAINTREEPUBLICKEY variable.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 10

https://devblogs.microsoft.com/oldnewthing/20100203-00/?p=15083
https://devblogs.microsoft.com/oldnewthing/20100203-00/?p=15083
https://www.braintreepayments.com/ca

Script parameter Description

braintreePrivateKey The private key associated to your Braintree account.

Example: "25d3cfa5a9674a8b12e167af80b8607f"

In the variable env. file, sets the XC_ENGINE_BRAINTREEPRIVATEKEY variable.

telerikKey The symmetric key used by the Telerik web controls.

Length: 64-128 characters random string.

Example: "mPgyfFKEf70UmVoE74LY93RmieAujDOD"

In the env. file, sets the TELERIK_ENCRYPTION_KEY variable.

idCert The ID Service certificate used to encrypt data.

Example: "mPgyfFKEf70UmVoE74LY93RmieAujDOD

In the env. file, sets the SITECORE_ID_CERTIFICATE variable.

idPassword The password used in the script that creates the ID Service certificate, and that is required to open the
Identity Server certificate.

Example: "Test123!"

In the env. file, sets the SITECORE_ID_CERTIFICATE_PASSWORD variable.

idSecret The shared secret between the Identity Server and client roles.

Length: 64 characters

Example: "utxHufWfiDEuqCK9a1kQ2sBvbX83gHMpVsrqptkvoOMttDjsvqrMmHwRG33aBYgL"

In the env. file, sets the SITECORE_IDSECRET variable.

xcIdSecret The shared secret to use as a salt when generating hash values between the Identity Server and
Commerce Engine Connect client roles. Length: 64 characters.

Example: "utxHufWfiDEuqCK9a1kQ2sBvbX83gHMpVsrqptkvoOMttDjsvqrMmHwRG33aBYgL"

In the env. file, sets the XC_IDENTITY_COMMERCEENGINECONNECTCLIENT_CLIENTSECRET1 variable.

reportingApiKey The symmetric key - ASCII string can be any combination of numerals or text - used to access the Sitecore
XDB Reporting WebAPI.

Length: 32 characters

Example: "GvkOg8s4jOgGN0SzBOq4J8rDwXyOZKR8"

In the env. file, sets the REPORTING_API_KEY variable.

isolation Optional parameter that sets Docker isolation modes in the .env file.

In the env. file, sets the ISOLATION variable.

The default value is "default". Other possible values are "process" and "hyperv".

To prepare the environment variable:

• Open a PowerShell window, replace the values with your own values, and run the following
sample script:

/UpdateEnvCompose.ps1 -envRootPath 'C:\Docker\Sitecore.Commerce.Container.SDK.*.*.***\xc0'
-licenseFile "C:\Docker\Sitecore.Commerce.Container.SDK.*.*.***\scripts\license.xml"
-braintreeEnvironment "sandbox" -braintreeMerchantId "rwd84b5k2rck8c7f"
 -braintreePublicKey "747f5tsgkbk9xrk3" -braintreePrivateKey
"25d3cfa5a9674a8b12e167af80b8607f" -telerikKey "mPgyfFKEf70UmVoE74LY93RmieAujDOD"
-idCert "MIIKqQIBAzCCCmUGCSqGSIb3DQEHAaCCC…" -idSecret

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 11

https://docs.telerik.com/devtools/aspnet-ajax/controls/asyncupload/security
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

"utxHufWfiDEuqCK9a1kQ2sBvbX83gHMpVsrqptkvoOMttDjsvqrMmHwRG33aBYgL"
 -idPassword "Test123!" -xcIdSecret
"srNMmM8lPeAYCcABY90f6nJIWWgx1DVX1ldc2iNN0z3qVZcGzuKwfGEHKDJzNMZ8" -reportingApiKey
"GvkOg8s4jOgGN0SzBOq4J8rDwXyOZKR8" -mediaSecret "25d3cfabDRS674a8r93Ab12e167a2Jk07f"

NOTE
The script creates the following Docker container volumes under "c:\containers":

• "cm\domains-shared"

• "cd\domains-shared"

• "engine\catalogs"

• "mssql-data"

• "solr-data"

2.1.1. The environment variables list
The following table lists the environment variables contained in the .env file for each Sitecore
topology.

NOTE
The variables that do not have a default value defined are those that are set when you
run the UpdateEnvCompose.ps1 script.

Environment variables for XC0, XC1, and XC1-CXA topologies

Variable name Topology Default value Description

BASE_SITECORE_DOCKER_REGISTRY XC0, XC1,

XC1-CXA

src.sitecore.com/base/ The base Sitecore container registry.

XP_SITECORE_DOCKER_REGISTRY XC0, XC1,

XC1-CXA

scr.sitecore.com/sxp/ Sitecore container registry.

XP_SITECORE_TAG XC0, XC1,

XC1-CXA

10.1.0-ltsc2019

NOTE
Refer to the
Sitecore.Commerc
e.Container.SDK
for the latest
value.

Image tag with the version to be
pulled from the container registry.

MODULES_SITECORE_DOCKER_REGIST
RY

XC1,

XC1-CXA

scr.sitecore.com/sxp/modules/ The Sitecore modules container
registry.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 12

Variable name Topology Default value Description

SPE_SITECORE_TAG XC1-CXA 6.2-1809

NOTE
Refer to the
Sitecore.Commerc
e.Container.SDK
for the latest
value.

The container image tag for
the Sitecore Powershell Extension
module.

SXA_SITECORE_TAG XC1-CXA 10.1.X-1809

NOTE
Refer to the
Sitecore.Commerc
e.Container.SDK
for the latest
value.

The container image tag for the
Sitecore SXA module.

XC_NONPRODUCTION_SITECORE_
DOCKER_REGISTRY

XC0,

XC1-CXA

scr.sitecore.com/sxc/
nonproduction

The Sitecore Commerce container
registry for non-production container.

XC_SITECORE_DOCKER_REGISTRY XC0,

XC1-CXA

scr.sitecore.com/sxc/ Sitecore Commerce container registry.

XC_PACKAGES_TAG XC0, XC1,

XC1-CXA

10.1.0-ltsc2019

NOTE
Refer to the
Sitecore.Commerc
e.Container.SDK
for the latest
value.

Image tag with the version to be
pulled from the container registry.

TRAEFIK_IMAGE XC0, XC1,

XC1-CXA

traefik:v2.2.0-
windowsservercore-1809

The Traefik image tag.

TRAEFIK_ISOLATION XC0, XC1,

XC1-CXA

default Override for Docker isolation level for
traefik.

Possible values: default, hyperv,
process.

ISOLATION XC0,

XC1-CXA

default Override for Docker isolation modes.

Possible values: default, hyperv,
process.

CD_HOST XC1-CXA xc1cd.localhost CD host name.

CM_HOST XC0,

XC1-CXA

For XC0: xc0cm.localhost

For XC1-CXA: xc1cm.localhost

CM host name.

ID_HOST XC0,

XC1-CXA

For XC0: xc0id.localhost

For XC1-CXA: xc1id.localhost

ID Server host name.

AUTHORING_HOST XC0,

XC1-CXA

authoring.localhost Authoring service host name.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 13

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

Variable name Topology Default value Description

SHOPS_HOST XC0,

XC1-CXA

shops.localhost Shops service host name.

MINIONS_HOST XC0,

XC1-CXA

minions.localhost Minions service host name.

OPS_HOST XC0,

XC1-CXA

ops.localhost The Ops service host name.

BIZFX_HOST XC0,

XC1-CXA

bizfx.localhost The Business Tools host name.

SITECORE_ADMIN_PASSWORD XC0,

XC1-CXA

Password12345 The Sitecore application administrator
password.

SQL_SA_PASSWORD XC0,

XC1-CXA

Password12345 The SQL Server administrator
password.

SITECORE_MASTER_DB XC0, XC1,

XC1-CXA

Sitecore.Master The Sitecore master db name.

SITECORE_CORE_DB XC0, XC1,

XC1-CXA

Sitecore.Core The Sitecore core db name.

XC_GLOBAL_DB XC0, XC1,

XC1-CXA

SitecoreCommerce_Global The Sitecore Commerce global db
name.

XC_GLOBAL_DB_TRUSTED_CONNECTIO
N

XC0,

XC1-CXA

false Whether the connection is trusted or
not.

XC_SHARED_DB XC0, XC1

XC1-CXA

SitecoreCommerce_
SharedEnvironments

The Sitecore Commerce shared db
name.

XC_SHARED_DB_TRUSTED_CONNECTIO
N

XC0,

XC1-CXA

false Whether the connection is trusted or
not.

XC_SHARED_ARCHIVE_DB XC0,

XC1-CXA

SitecoreCommerce_
ArchiveSharedEnvironments

The name of the database where
archived Commerce entities are
stored.

XC_ENGINE_BRAINTREEENVIRONMENT XC0,

XC1-CXA

no default The Braintree environment.

Set by running the
UpdateEnvCompose.ps1 script.

XC_ENGINE_BRAINTREEMERCHANTID XC0,

XC1-CXA

no default Your merchant ID for the Braintree
payment provider.

Set by running the
UpdateEnvCompose.ps1 script.

XC_ENGINE_BRAINTREEPUBLICKEY XC0,

XC1-CXA

no default The public key associated to your
Braintree account.

Set by running the
UpdateEnvCompose.ps1script.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 14

https://www.braintreepayments.com/ca/sandbox
https://www.braintreepayments.com/ca/sandbox
https://www.braintreepayments.com/ca/sandbox

Variable name Topology Default value Description

XC_ENGINE_BRAINTREEPRIVATEKEY XC0,

XC1-CXA

no default The private key associated to your
Braintree account.

Set by the running the
UpdateEnvCompose.ps1 script.

XC_BIZFX_DEFAULT_LANGUAGE XC0,

XC1-CXA

en The default language used in the
Business Tools user interface.

XC_BIZFX_DEFAULT_CURRENCY XC0,

XC1-CXA

USD The default currency to use by the
shop.

XC_BIZFX_DEFAULT_SHOPNAME XC0,

XC1-CXA

CommerceEngineDefaultStorefron
t

The default shop name.

XC_ENGINE_CONNECT_CLIENTID XC0,

XC1-CXA

CommerceEngineConnect The client ID assigned to Commerce
Engine Connect for Sitecore Identity.
This ID is used to identify the
Commerce Engine Connect with
Commerce Engine.

XC_IDENTITY_
COMMERCEENGINECONNECTCLIENT_
CLIENTSECRET1

XC0,

XC1-CXA

no default Shared secret between the Identity
Server and Commerce Engine Connect
client roles.

Length: 64 characters

Set by the running the
UpdateEnvCompose.ps1 script.

REPORTING_API_KEY XC0,

XC1-CXA

no default Symmetric key used to access the
Sitecore XDB Reporting WebAPI.

Length: 32 characters

Set by the running the
UpdateEnvCompose.ps1 script.

TELERIK_ENCRYPTION_KEY XC0,

XC1-CXA

no default Symmetric key used by the Telerik
web controls.

Length: 64-128 characters

Set by the running the
UpdateEnvCompose.ps1 script.

SITECORE_IDSECRET XC0,

XC1-CXA

no default Shared secret between the Identity
Server and client roles.

Length: 64 characters

Set by running the
UpdateEnvCompose.ps1 script.

SITECORE_ID_CERTIFICATE XC0,

XC1-CXA

no default The Identity Server certificate used to
encrypt data.

Set by the running the
UpdateEnvCompose.ps1 script.

SITECORE_ID_CERTIFICATE_PASSWO
RD

XC0,

XC1-CXA

no default The password required to open the
Identity Server certificate.

Set by the running the
UpdateEnvCompose.ps1 script.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 15

https://www.braintreepayments.com/ca/sandbox

Variable name Topology Default value Description

SITECORE_LICENSE XC0,

XC1-CXA

no default The path to the Sitecore license file.

SOLR_CORE_PREFIX_NAME XC0,

XC1-CXA

sitecore The prefix to use in Sitecore Solr core
names (as in sitecore_master_index,
for example.)

SOLR_COMMERCE_PREFIX_NAME XC0,

XC1-CXA

commerce The prefix to use in Commerce
Solr core names (as in commerce_
CatalogItemsScope, for example.)

2.2. Generate the Identity Server token signing certificate

Sitecore Identity server requires a private key certificate to sign the tokens that are passed between
the server and the clients. You must generate this certificate, and encode it to a Base64 encoded
string form.

To generate a self-signed certificate :

NOTE
The following shows a sample script that generates a self-signed certificate and
prepares the string that is used as an environment variable. The sample script creates
the text file with the certificate and, copies the content of the file to the environment
variable configuration file.

• Run the following sample script:

NOTE
The value of the password to convert (in the following example "Test123!")
must match the value of the "Sitecore_ID_Certificate_Password"
variable specified in the .env file, or the "idPassword" value used in the
UpdateEnvCompose.ps1 file.

$newCert = New-SelfSignedCertificate -DnsName "localhost" -FriendlyName "Sitecore Identity
Token Signing" -NotAfter (Get-Date).AddYears(5)

Export-PfxCertificate -Cert $newCert -FilePath .\SitecoreIdentityTokenSigning.pfx -Password
(ConvertTo-SecureString -String "Test123!" -Force -AsPlainText)

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes((Get-Item
.\SitecoreIdentityTokenSigning.pfx))) | Out-File -Encoding ascii -NoNewline -Confirm
-FilePath
.\SitecoreIdentityTokenSigning.txt

In the env. file, the output of this script provides the values for the
SITECORE_ID_CERTIFICATE environment variable.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 16

NOTE
Alternatively, like the Sitecore license file, you can also mount the Sitecore Identity
Server certificate on the file system instead of passing it as an environment
variable.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 17

2.3. Generate TLS/HTTPS certificates
To satisfy modern browser requirements and provide a secure environment by default, you must
generate certificates for TLS (Transport Layer Security) before you deploy the Sitecore containers. This
ensures secure communication between the browser and the HTTPS reverse proxy container.

NOTE
The Sitecore Commerce Container SDK contains dummy certificates you can use to get
started in the folder /xc0/traefik/.

If you change the local host names (in case, for example, that you have multiple
Commerce instances running in parallel), you must generate your own certificates.

The default reverse proxy or edge router used by the Sitecore Experience Platform in Docker
Compose is Traefik. The Traefik edge router is used as a reverse proxy to the individual XP containers
and terminates the TLS connections sent by the browser. For more information, see the Traefik
documentation about TLS configuration.

All communication between the Traefik edge router and the individual containers is encrypted with
the HTTPS protocol.

HTTPS protocol is required to support the secure browser cookies used by the Sitecore Content
Management role and the Identity Server role.

The Sitecore.Commerce.Containers.SDK/scripts folder contains two script files that generate
LS/SSL certificates required by the XCO topology and the XC1-CXA topology, respectively.

To generate TLS/SSL certificates:

1. Browse to the Sitecore.Commerce.Containers.SDK/scripts folder, and open a
Windows Command Prompt as Administrator.

2. From the scripts folder, execute the appropriate script for your deployment topology:

• For a XC0 topology, run the CreateCertsXC0.cmd script.

• For a XC1-CXA topology, run the CreateCertsXC1-CXA.cmd script.

NOTE
The mkcert utility will prompt the user the first time to install the generated
self-signed root certificate authority.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 18

2.4. Update the Windows hosts file
You must update the Windows hosts file to include the host names used by the reverse proxy
container to access the Sitecore application from a browser. The default host names differ depending
on the topology you decide to deploy. All the host names should point to the loopback IP address
127.0.0.1.

The following shows an example of the content of Windows host file definition with the default
hostnames for the XC0 topology:

127.0.0.1 xc0cm.localhost
127.0.0.1 xc0id.localhost
127.0.0.1 bizfx.localhost
127.0.0.1 authoring.localhost
127.0.0.1 shops.localhost
127.0.0.1 ops.localhost

The following table lists the default hostnames for each topology:

Topology IP address Hostnames

XC Workstation (XC0) 127.0.0.1 xc0cm.localhost

127.0.0.1 xc0id.localhost

127.0.0.1 bizfx.localhost

127.0.0.1 authoring.localhost

127.0.0.1 shops.localhost

127.0.0.1 ops.localhost

XC Scaled (XC1) 127.0.0.1 xc1cm.localhost

127.0.0.1 xc1cd.localhost

127.0.0.1 bizfx.localhost

127.0.0.1 authoring.localhost

127.0.0.1 shops.localhost

127.0.0.1 minions.localhost

127.0.0.1 ops.localhost

To change the default host names, you must:

1. Generate the TLS certificates with the correct host names.

2. Update the Traefik reverse proxy configuration labels for each role with the correct host
names.

NOTE
For more information, see the documentation for Traefik Docker configuration
discovery.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 19

https://docs.traefik.io/providers/docker/
https://docs.traefik.io/providers/docker/

2.5. About production and non-production containers images
Sitecore XC Docker images that are provided as samples are not suitable for a production
environment.

Sitecore provides non-production Docker images for Microsoft SQL Server, Apache Solr, and
RedisLabs Redis that are only for use on developer workstations. These images are preloaded with
the required database and search configurations that are specific to each product and are designed to
facilitate rapid deployment.

Every container image that has the type=nonproduction label is not supported in production
environments. No warranty or extended support is provided for images that are labelled for non-
production.

IMPORTANT
The non-production services do not follow the best practices for hosting a production
environment and should not be considered as a basis for production environments.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 20

3. Deploy a Sitecore XC developer workstation

You use Docker for Windows to deploy the Sitecore XC container packages.

To deploy Sitecore XC developer workstation using containers:

1. In Docker for Windows, switch to Windows container mode. (The Docker for Windows tray icon
has an option to switch between Linux and Windows container development).

2. Download and extract the Sitecore.Commerce.Container.SDK.*.*.zip package from
the Sitecore Developer Portal and store it on your local workstation.

3. In Windows Explorer, go to the folder where you extracted the Sitecore Commerce Container
SDK, and open the Docker Compose folder for the topology that you want to deploy.

4. Update the environment configuration file with the appropriate values for all the environment
variables including the required passwords, encryption keys, certificates, and the license file.

5. If required, to generate the required TLS reverse proxy certificates, open a command prompt/
terminal, and run the sample shell script.

6. If you did not generate your own self-signed root certificate, you can install the packaged
dummy certificate. To install the packaged dummy root certificate, open the ./traefik/
certs folder, double- click the root-ca.crt file, and follow the prompts.

7. Open the /xc0/docker-compose.yml file, and review the content to get a better
understanding of the containers and connection strings between the different roles.

8. In the Windows console, go to the folder that contains the docker-compose.yml file, and run
the following Docker Compose command:

docker-compose up --detach

NOTE
Docker Compose pulls all the required images from the Sitecore Container
Registry, creates the required Docker network configuration, and deploys all
the containers to the local environment. When the deployment is successfully
completed, the Docker Compose command exits.

IMPORTANT
Before running an image, ensure that your host operating system version is
greater than or equal to the OS version of the container image. Otherwise,
the following error may occur: "ERROR: manifest not found: manifest unknown:
manifest unknown" error."

Also, ensure the host OS version patch level matches or is greater than the
container OS image patch level.

9. To check the Docker container status, run the following command:

docker container list

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 21

https://docs.docker.com/docker-for-windows/#:~:text=Switch%20between%20Windows%20and%20Linux,Linux%20containers%20(the%20default).
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

NOTE
This command generates a list of all the containers and their current status.

10. When the status of all the containers is healthy, validate that you can access the Commerce
Authoring environment. Open a browser and enter the URL for the instance of the Commerce
Engine running the Commerce Authoring service. The default host name for the Commerce
Authoring is: https://authoring.localhost/commerceops/$metadata. (The default host
names for the other topologies are listed here.)

NOTE
Commerce services run on the following ports by default: 443, 8079 and 8080.
To avoid errors, ensure to stop all services running on these ports.

11. When deployment is done, you must complete the post-deployment steps.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 22

4. Post-deployment tasks

Once you have confirmed that the status of all containers is healthy, you must perform the following
tasks to complete your deployment:

• Bootstrap and initialize the Commerce Engine

• Validate the deployment of the Business Tools

• Configure user accounts

• Generate catalog templates

• Perform full rebuild of Commerce indexes

• Populate Solr managed schema

• Manually rebuild Sitecore XP indexes

• Create an SXA Storefront tenant and site (for XC1-CXA topology only)

• Clean up a workstation environment

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 23

4.1. Bootstrap and initialize the Commerce Engine
After you have confirmed that Docker containers have a healthy status, you must bootstrap and
initialize your Commerce environments.

The Commerce Engine SDK includes samples of API calls for DevOps operations, so that you can
access the Sitecore XC API directly. The following instructions assume that you are using Postman to
exercise the Sitecore XC API.

NOTE
The following instructions assume that you have access to a Sitecore XC development
(or DevOps) environment, with the Postman API samples deployed. The Postman
samples are included as part of the Sitecore Commerce Engine SDK, available for
download in Sitecore XC Packages for On Premise WDP.

4.1.1. Setup the environment in Postman
You must setup the environment in Postman to point to your deployment before you can exercise the
API samples.

Within the Sitecore Container SDK, the postman folder contains predefined sets of sample
environment files (for the Habitat environment and for the Adventure Works environment). You can
import either of these sample environments into Postman or create your own.

NOTE
With a new installation of Postman, you must disable SSL certificate verification in
order to get a response back from the Commerce Engine. To do this, in Postman,
click File, Settings and then set SSL certificate verification to OFF.

To setup the environment in Postman, for example, the Habitat Environment:

1. In the top right corner of Postman, click the Manage Environments icon.

2. In the Manage Environments dialog, click Import , click Choose file , and then browse
to the Sitecore Commerce Container SDK/postman folder and select the appropriate
environment file for your deployment.

3. Click Add.
The following shows an example of the predefined Habitat environment variables for XC
container images running in Docker:

Variable (key) Default value

Environment HabitatAuthoring

ShopName CommerceEngineDefaultStorefront

ShopperId ShopperId

Language en-US

Currency USD

ServiceHost https://authoring.localhost

ShopsApi api

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 24

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/execute-sample-api-calls-in-postman.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/sitecore-commerce-engine-sdk.html
https://dev.sitecore.net/Downloads/Sitecore_Commerce/101/Sitecore_Experience_Commerce_101.aspx

Variable (key) Default value

OpsApi commerceops

OpsApiHost https://ops.localhost

AuthoringHost https://authoring.localhost

MinionsHost https://minions.localhost

ShopsHost https://shops.localhost

SitecoreIdServerHost https://{{Topology}}id.localhost

NOTE
The {{Topology}} variable is set based on the
Topology key value. The Topology value should
be set to xc0 or xc1, based on your deployment.
For example, if the Topology key is set to xc1,
then https://{{Topology}}id.localhost
resolves to https://xc1id.localhost.

SitecoreIdServerUserName sitecore\\admin

SitecoreIdServerPassword The admin user password used to authenticate the request. (default:
Password12345)

GeoLocation IpAddress=1.0.0.0

MinionsEnvironment HabitatMinions

ShopsEnvironment HabitatShops

Protocol https

Topology xc0

Possible values: xc0 or xc1.

4.1.2. Bootstrap and initialize the Commerce Engine
To run the bootstrap and initialize operations:

1. In the top right corner of Postman, click the environment selector and select the environment,
for example the Habitat Environment.

2. In the Postman Collections pane, open the Authentication folder, and in the Sitecore sub-folder,
execute the GetToken request.

3. Open the SitecoreCommerce_DevOps folder.

4. Open the 1 Environment Bootstrap folder, and execute the Bootstrap Sitecore Commerce call.

5. Open the 3 Environment Initialize folder, and execute the Ensure\Sync default content paths
call.

NOTE
If the status of a request is WaitingForActivation, you can execute
the Check Long Running Command Status request. When you execute the
CheckCommandStatus request, you must ensure that you are calling the same
service that the previous command was executed in.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 25

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/check-the-status-of-a-long-running-command.html

6. In the 3 Environment Initialize folder, execute the Initialize Environment call.

NOTE
If the status of a request is WaitingForActivation, you can execute
the Check Long Running Command Status request. When you execute the
CheckCommandStatus request, you must ensure you are calling the same
service that the previous command was executed in.

7. Repeat step 4 and 5 above for other environments if applicable (for example, for the
AdventureWorks environment).

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 26

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/check-the-status-of-a-long-running-command.html

4.2. Validate the deployment
After bootstrapping and initializing the Commerce Engine, make sure that you can access the
Business Tools, and the Sitecore Launchpad.

4.2.1. Validate the deployment of Business Tools
The Sitecore Commerce XC Business Tools are deployed in the Authoring environment.

To validate the deployment of the Business Tools:

1. Open a browser, and enter the URL for the Commerce Business tools instance. The default
host name for the XC Business Tools is: https://bizfx.localhost.

2. Login to the Business Tools and ensure that you can browse the tools.

NOTE
Within the Sitecore Launchpad, the links to the Business Tools will be broken when you
bring up the containers. To fix it, follow these instructions and, in the Link field, enter
the URL https://bizfx.localhost/ (instead of https://localhost:4200).

4.2.2. Validate access to the Content Management instance
To validate the deployment of the Content Management instance:

1. Open a browser, and enter the URL for the Content Management instance. The Content
Management instance runs on port 443 and uses the HTTPS protocol.
The default host name for the Content Management instance is:

• In a XC0 topology: https://xc0cm.localhost

• In a XC1-CXA topology: https://xc1cm.localhost

2. Validate that you can login to Sitecore and access the Sitecore Launchpad.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 27

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/change-the-url-to-the-commerce-business-tools.html

4.3. Configure user accounts
After you have deployed your Sitecore XC solution, you must create user accounts and assign the
appropriate roles.

NOTE
Every Sitecore XC user who requires access to the Business Tools must have the
Commerce Business User role assigned, at a minimum.

You create users and assign roles using the User Manager tool on the Sitecore Launchpad.

Refer to the User roles and permissions topic for information on the pre-defined roles and associated
permissions for the Sitecore XC Business Tools.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 28

https://doc.sitecore.com/developers/101/platform-administration-and-architecture/en/create-a-user.html
https://doc.sitecore.com/developers/101/platform-administration-and-architecture/en/add-a-user-to-a-role.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/user-roles-and-permissions.html

4.4. Generate catalog templates
After you have deployed your Sitecore XC solution, you must refresh the cache and generate catalog
templates, then republish the site.

You can perform both of these operations from the Content Editor on the Sitecore Launchpad.

To generate catalog templates:

1. Open a browser, and login to the Sitecore Launchpad (in a container deployment, the URL is
https://cm.globalhost/sitecore)

2. Click on Content Editor.

3. In the Content Editor, click on the Commerce tab.

4. Click on Refresh Commerce Cache (in the Caches tile).

5. Click on Update Data Templates (in the Catalog tile).

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 29

4.5. Perform full rebuild of Commerce indexes
After you initialized your environments with Commerce data (for example, the sample
AdventureWorks or Habitat environments), you must rebuild the following Commerce indexes using
Postman:

• Catalog Items

• Promotions

• Price Cards

To rebuild Commerce search indexes using Postman:

1. In the Postman Collections pane, expand the SitecoreCommerce_DevOps collection.

2. Open the Minions folder, and execute the following request:

• Run FullIndex Minion - Catalog Items request.

• Run FullIndex Minion - Promotions request.

• Run FullIndex Minion - PriceCards

4.6. Manually rebuild Sitecore XP indexes
There are situations where you need to completely rebuild Sitecore search indexes, for example,
when you deploy to a production environment, when you have new or changed content to re-index,
when indexes are out of date, or when indexes have been corrupted.

You can manually trigger a complete rebuild of the Sitecore master and web indexes to ensure that
they reflect the latest changes in your Commerce data. The following procedure shows how to rebuild
Sitecore XP indexes using the Sitecore Control Panel, but there are other ways to perform a complete
rebuild of Sitecore search indexes.

Alternatively, you can perform a partial update of the Sitecore master and web indexes, by only
re-indexing Commerce content within those indexes, using Postman API requests.

NOTE
It is best practice to rebuild each index separately. It does not matter which one you
choose to build first.

To rebuild a Sitecore search index :

1. From the Sitecore Launchpad, open the Control Panel.

2. In the Indexing section, click Indexing Manager.

3. In the Indexing Manager dialog box, select sitecore_master_index and click Rebuild.

4. When the Sitecore master index is rebuilt, repeat the steps above to rebuild the
sitecore_web_index.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 30

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/rebuild-a-commerce-search-index-using-postman.html
https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/rebuild-a-commerce-search-index-using-postman.html

4.7. Populate Solr managed schema
To populate Solr managed schema:

1. Login to Sitecore

2. Open Sitecore Control Panel and, in the Indexing section, click Populate Solr Managed
Schema.

3. In the Schema Populate dialog, select the Sitecore index for which to populate schema. At a
minimum, you must select the Sitecore Web index (sitecore_web_index) and Sitecore Master
index (sitecore_master_index).

4. Click Populate.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 31

4.8. Create an SXA Storefront tenant and site
If your deployment topology includes the SXA Storefront and you to want to use the SXA Storefront
site as a starting point to create your own e-commerce site, you must create a new tenant and
storefront site using this procedure.

NOTE
In deployment using Kubernetes, the SXA Storefront site is functional only after you
complete all post-deployment steps.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 32

https://doc.sitecore.com/developers/101/sitecore-experience-commerce/en/create-a-commerce-tenant-and-site.html

4.9. Clean up a workstation environment
You can stop or completely remove workstation environment.

To stop a Docker Compose environment without removing its contents, run:

docker-compose stop

To resume a previously stopped Docker Compose environment, run:

docker-compose start

To remove a Docker Compose environment and all the non-mounted volumes, run

docker-compose down

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 33

5. Appendix A: Using existing Solr and SQL services in
a Commerce Docker deployment

How to configure a Commerce Docker deployment to use existing instances of Solr and SQL hosted
services.

The Sitecore.Commerce.Container.SDK package includes sample container images for SQL
and Solr services. These sample services allow you to deploy a complete, new working sample
solution. However, there are scenarios where you might want to convert an existing, non-
containerized Commerce deployment to a containerized Commerce Docker deployment, and having
this deployment use your existing instance of Solr and SQL services. The following information
provides basic, common instructions for deploying the Sitecore XC sample containerized solution with
Docker, but using an existing instance of Sorl and SQL services.

NOTE
This information is provided as guidance and, depending on your customizations or
other circumstances specific to your Commerce deployment, additional configuration
could be required.

5.1. Configure a Commerce Docker container deployment to
use an existing SQL service
To configure your Commerce container deployment to use an existing SQL service instance:

1. In the Sitecore.Commerce.Container.SDK package, open the <topology>/.env file,
and update the environment variables to match the configuration of your existing SQL
environment (if these variables are being used in your own deployment). For example, ensure
that:

• The value of the SQL_SA_PASSWORD variable matches the value in your existing (non-
container) SQL environment.

• The value of the SITECORE_ADMIN_PASSWORD matches the value in your existing (non-
container) deployment.

• All *_DB variable values match the database names in your existing SQL environment.

2. Open the docker-compose.yml file, and remove the mssql: service section from the file to
prevent it from deploying the sample service.

3. In the docker-compose.yml file, other services depend on the msql service being either
started or healthy. Remove these dependencies on the MSQL service to avoid the following
type of errors during deployment: ERROR: Service '<service name>' depends on
service 'msql' which is undefined.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 34

For example, the following shows a dependency that must be removed, where the cd service
depends on the health of the MSQL service:

cd:
 isolation: ${ISOLATION}
 image: ${XC_SITECORE_DOCKER_REGISTRY}sitecore-xc1-cd:${XC_PACKAGES_TAG}
 depends_on:
 mssql:
 condition: service_healthy

4. In the docker-compose.yml file, search for all instances of Sitecore_ConnectionStrings
variables, and update the connection string value with the existing SQL service instance. For
example, in the section that contains the cd: configuration, update the following connection
strings with the connection string information from your existing non-containerized
deployment:

• Sitecore_ConnectionStrings_Security

• Sitecore_ConnectionStrings_Web

• Sitecore_ConnectionStrings_Messaging

• Sitecore_ConnectionStrings_ExperienceForms

• Sitecore_ConnectionStrings_Exm.Master

5. In the docker-compose.yml file, for each Commerce Engine service
environment section, for example COMMERCEENGINE_AppSettings__EnvironmentName:
HabitatShops, COMMERCEENGINE_AppSettings__EnvironmentName:
HabitatMinions, COMMERCEENGINE_AppSettings__EnvironmentName: HabitatOps,
COMMERCEENGINE_AppSettings__EnvironmentName: HabitatAuthoring, update the
value of following parameters to your SQL server host name:

• COMMERCEENGINE_GlobalDatabaseServer: <YOUR SQL SERVER HOST NAME>

• COMMERCEENGINE_SharedDatabaseServer: <YOUR SQL SERVER HOST NAME>

6. In the docker-compose.yml file, search for any other references to MSSQL or other
configuration related to MSSQL, and update the values to match the configuration of your
existing, non-containerized MSSQL service.

5.2. Configure a Commerce Docker container deployment to
use an existing Solr service
To configure a Commerce container deployment to use your existing Solr service instance:

1. In the Sitecore.Commerce.Container.SDK package, open the <topology>/.env file,
and update the environment variables to match the configuration of your existing Solr
environment (if these variables are being used in your own deployment). For example, ensure
that:

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 35

• The value of the SOLR_CORE_PREFIX_NAME is configured to the correct Solr core prefix.

• The value of the SOLR_COMMERCE_PREFIX NAME is configured to the correct Solr core
prefix.

2. Open the docker-compose.yml file, and completely remove the solr: and the solr-init:
configuration sections from the file, to prevent the deployment of the sample solr service.

3. In the docker-compose.yml file, other services have dependencies on the condition solr
or solr-init service, either being started or healthy. Remove these dependencies on the
Solr service, otherwise the following error occurs during deployment: ERROR: Service
'<service name>' depends on service 'Solr' which is undefined.
The following shows a dependency example, where the cd service depends on the condition of
the Solr service:

cd:
 isolation: ${ISOLATION}
 image: ${XC_SITECORE_DOCKER_REGISTRY}sitecore-xc1-cd:${XC_PACKAGES_TAG}
 depends_on:
 mssql:
 condition: service_healthy
 solr:
 condition: service_started

4. In the docker-compose.yml file, update all instances of the
Sitecore_ConnectionStrings_Solr.Search: parameter to match the value of the Solr
connection string used in your deployment.

5. Search for any other references or configuration related to SOLR, and update their value to
match the configuration of your existing, non-containerized Solr deployment.

5.3. Prepare for deployment
After you have updated the .env and the docker-compose files to match the configuration of your
own instance of SSQL and Solr services, prepare the required files and certificates.

5.4. Additional consideration when deploying the containerized
solution
To deploy Sitecore XC developer workstation using containers, follow these instructions.

The following are considerations when checking the health status of Docker containers:

• If any container has an unhealthy status, verify the connection string to ensure they are correct.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 36

• If the status of any container related to Xconnect is unhealthy, and you have confirmed that the
connection strings are valid, ensure that in the Xdb.Collection.ShardMapManager database,
the _ShardManagement.ShardsGlobal table specifies the correct Servername value.

5.5. Post-deployment steps when using an existing SQL service
instance
The post-deployment requirements when using an existing SQL service are different than in a new
deployment. When you deploy using existing services, you only need to perform the following post-
deployment tasks:

1. Setup the Postman environment to use the appropriate environment variables, and then
bootstrap the Commerce Engine. This step is required to update the Global database with
your own environments.

NOTE
You can follow these steps to setup the environment using your own values,
and to bootstrap the Commerce Engine. You do not need to initialize the
environment.

2. Restart the Commerce Engine containers to ensure the environment updates are applied.

NOTE
For a deployment with a storefront, the required domains.config
configuration is missing from the container. You must update the
\containers\cm\domains-shared\domains.config file (and the same file
under \containers\cd\ if applicable) to include configuration specific to your
storefront.

Installation Guide for a Developer Workstation with Containers

© Copyright 2021, Sitecore® - all rights reserved. 37

	Installation Guide for a Developer Workstation with Containers
	Table of Contents
	1. Introduction
	1.1. Topologies
	1.1.1. XC Workstation topology (XC0)
	1.1.2. XC Scaled topologies (XC1 and XC1-CXA)
	1.1.3. Roles included in XC0 and XC1-CXA topologies

	1.2. Sitecore XC Docker Compose files
	1.2.1. Docker Compose file
	1.2.2. Environment variables file

	1.3. Software Requirements
	1.4. Hardware requirements

	2. Prepare for Commerce containers deployment
	2.1. Prepare the environment variables file
	2.1.1. The environment variables list

	2.2. Generate the Identity Server token signing certificate
	2.3. Generate TLS/HTTPS certificates
	2.4. Update the Windows hosts file
	2.5. About production and non-production containers images

	3. Deploy a Sitecore XC developer workstation
	4. Post-deployment tasks
	4.1. Bootstrap and initialize the Commerce Engine
	4.1.1. Setup the environment in Postman
	4.1.2. Bootstrap and initialize the Commerce Engine

	4.2. Validate the deployment
	4.2.1. Validate the deployment of Business Tools
	4.2.2. Validate access to the Content Management instance

	4.3. Configure user accounts
	4.4. Generate catalog templates
	4.5. Perform full rebuild of Commerce indexes
	4.6. Manually rebuild Sitecore XP indexes
	4.7. Populate Solr managed schema
	4.8. Create an SXA Storefront tenant and site
	4.9. Clean up a workstation environment

	5. Appendix A: Using existing Solr and SQL services in a Commerce Docker deployment
	5.1. Configure a Commerce Docker container deployment to use an existing SQL service
	5.2. Configure a Commerce Docker container deployment to use an existing Solr service
	5.3. Prepare for deployment
	5.4. Additional consideration when deploying the containerized solution
	5.5. Post-deployment steps when using an existing SQL service instance

